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A NEW SUMMATION METHOD 
FOR POWER SERIES 

WITH RATIONAL COEFFICIENTS 

SILVIA DASSIE, MARCO VIANELLO, AND RENATO ZANOVELLO 

ABSTRACT. We show that an asymptotic summation method, recently pro- 
posed by the authors, can be conveniently applied to slowly convergent power 
series whose coefficients are rational functions of the summation index. Several 
numerical examples are presented. 

1. ASYMPTOTIC SUMMATION 

Consider a power series 

(1) E fjzj 
j=1 

where z E C and fj E C. In [3] we proved that, when the coefficients fj possess an 
asymptotic expansion 

(2) f1r alj-Pl +a2jP2 + .., j , <P1 <P2 < ... 

and Pk+1 - Pk c N, then also the remainder of (1) has an asymptotic expansion 
00 

(3) S fjzj znn-q{bl(z)n-l + b2(z)n-2 + * }, n > oo, 
j.=n 

where q = P1-I if lzl < 1 and z =4 1, and q = P1 -2 if z 1. In particular, 
we provided explicit formulas for the computation of the coefficients bk(z), which 
allow for a direct use of expansion (3) for the numerical summation of (2). It is 
worth recalling that in [11] Sidi already showed the mere existence of an asymptotic 
expansion for the remainder, as a basis for acceleration of convergence by means of 
Levin's T-transformation. Convergence of the series (2), in fact, can be very slow 
(when P1 is "small") for z on (or close to) the boundary of the unit circle. 

When Pk+1 -Pk 1, which is the most common case in applications, the quoted 
formulas are simple and easy to implement. In fact, for z - 1 we have 

k-1 

(4) bk (Z) =- ak-i i(k, z), 
4-0 
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where the Wi are recursively defined by 

Ro (k, z)= 

(5) (k ) Iz E ( i + 1-0-p ) (k,) Z i = 1 21 .... 
r= 

while for z =1 we have 

(6) bk(l) = ( 1- Bk-i, 

where Bk are the Bernoulli numbers; cf. [2], [3, Formula (24)]. Observe that the 
more general formula (5) of [3] contains a misprint: the number k + Pe - P1 - 1 in 
the binomial coefficient, should be k + P1 - p- 1 instead. 

As a numerical application, we considered in [3] the evaluation of the special 
function 

00 

S(z; jo, v, a, b, p) = S zi (j + b)v-1 (j + a)-P , lzl < 1, 

0 < v < 1, a, b C C\ f{-jo,-jo-1, ...}, 

generalizing various summation problems that appeared in the recent literature on 
convergence acceleration of numerical and power series; cf., e.g., [1, 4, 5, 6, 8, 9, 10]. 
When z is on or close to the boundary of the unit circle, summation of (7) was 
accomplished by a numerical algorithm based directly on the expansion (3) and the 
formulas (4)-(6). 

2. THE CASE OF RATIONAL COEFFICIENTS 

In the present work, we show that the approach briefly described in the previous 
section can be also applied to the numerical summation of series whose coefficients 
are rational functions of the index, i.e., 

00 

S=S(z) = zi(j+b)v1r(j) , lz < 1, 
(8) j=jo 

0 < V < I, b E C \ -jO, -jo-1- * -}.. r (j) - 
a 

(j) = astat + ao0 

where t - s > v if z 1, t - s > v - 1 if lzl < 1 and z -- 1, and :3(j) -& 0 for all 
integers j > jo. 

A possible approach to the summation of (8) in instances of slow convergence 
is given by partial fraction decomposition of the rational function, together with 
suitable algorithms for the computation of (7). The series involved in the partial 
fractions are indeed of that form, with p C N. This represents a motivation for the 
development of special summation methods for the series in (7), as pointed out in 
several recent papers (cf. [4, 6, 8]). On the other hand, though the basic step of 
partial fraction decomposition can be accomplished in an efficient manner (cf. [7, 
?7.1]), it is still quite costly. 

For this reason, it is worth pursuing a direct use of asymptotic summation via (3)- 
(5), provided an asymptotic expansion like (2) exists for the coefficient (j+b)v-lr(j) 
and can be easily constructed. This is indeed the case for a rational function 
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r(z) = oa(z)/l(z), which admits an asymptotic expansion in powers of z-, the 
convergent Laurent expansion, in a suitable neighborhood of 00 which omits the 
poles of r(z). Thus the following asymptotic relation holds: 

/m 

(9) 04j) =js-1t3(j) eCky-k + c(jm-1)) , m = 0,1,2, ... j >n 

k=O 

where n is the least positive integer such that r(z) has no poles for Izl > n, and the 
Ckis are the coefficients of the Laurent expansion of r(z). 

FRom (9) we can compute recursively the coefficients Ck by means of the aoi's and 
f3B's (cf. (8)). In fact, substituting from (8) the explicit expressions for a(j) and 
/3(j) and comparing the coefficients of like powers of j on the left and right of (9), 
we obtain the infinite triangular system 

(10) C Ckft-+ = 0 kf? < 
k=O ff> SI 

and, by forward substitution, we find that 

J 
(azs-k 

- ZO Cif3tk+i) /f3t if 0 < k < s, 
(11) Ck = 

I - Z-_o Ci3t-k+i/f3t if k > s . 

In this way we get the asymptotic expansion 
m 

(12) fi := (j + b)V-lr(j) Z akj-Pk + 0(j-Pm+l) I mT 1,2, ... , j > n' 
k=1 

with 

(13) ak (k ) ci-lb Pkk+t 

and 
if b C (C\ (-0 30-jo], 

(14) n* 
(4max { n, [ bl] + 1 if b c(-o, jo] \ {-jo-jo-1 *-}. 

In (13), indeed, ak is the kth coefficient of the product of the asymptotic expansions 
for r(j) and (j + b)V1. The fact that (j + b)v1 = Jvi (l + b/j)v possesses an 
asymptotic expansion in powers of j-1 is a trivial consequence of the Maclaurin 
formula for the binomial function (1 + w)V-l when w = b/j c C \ (-oc, -1] (where 
j > Ibl when b < 0). 

FRom (3)-(6) we can finally write the representation 
n-1 

S = Sn + Rn = zJ(j + b)V-lr(j) + ? 7n,m + En,m mI = 1, 2, .... 

(15) J=jo m 

07n,m = Z n S Ebk(z)n , Zn 0 (n (m+q+1)) , n > n* 
k=1 

where q = t - - v if z 7 1, and q = t - s - s - 1 if z = 1. 
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3. THE SUMMATION ALGORITHM 

The representation (15) gives rise to the problem of constructing an algorithm 
that finds a pair (n, m) such that the relative error IEn,m/Sj is below a given toler- 
ance and at the same time the computational cost is low. Recall that, because of 
the asymptotic nature of the approximation in (15), the error term En,m tends to 0 
as n -* oo, but is not infinitesimal as m -* oo; indeed, jEn,ml exhibits for each fixed 
value of n a minimum in m which is infinitesimal as n -* oo. As in [3], however, 
we forgo a procedure based on finding (empirically) such a minimum for a given 
subsequence of indices {n,}: in fact, the complexity in the computation of cJn,m 

increases quadratically (z = 1) or cubically (z 7& 1) with m, so that this approach 
turns out to be quite costly. 

An alternative strategy, which is that adopted in [3], consists in trying to balance 
the computational cost of the partial sum Sn with that of CUn,m in terms of the 
order of magnitude of the respective flops number. While the computation of CUn,m 
requires basically only elementary arithmetic operations, that of Sn may involve 
the evaluation of logarithms (when v < 1). In this regard we have assumed that 
the computation of a logarithm corresponds to 10 flops: this value was obtained by 
averaging the results obtained with various programming languages and compilers, 
on various processors. 

The summation algorithm can then be summarized as follows: 

(i) k := 1, no := jo - 1, Sn := 0, co := as/f3t; 

(ii) compute the coefficient ak by (11), (13), and bk(z) by (4)-(6); 
(iii) compute the partial sumSnk as 

nk 

(16) Snk = Snk-1 + E z (j + b)V-lr(J) 
j=nk-l+l 

where nk is choosen in such a way as to balance the cost of (ii) with the cost 
of (16), as described above; 

(iv) fori1=,...,k 
* compute Unkj as in (15); 
* if i<k,thenif 

|n, | Snk - Snk-1 + <7kk 
- reltol , 

Ak, A~5k ?Pk,i reltol, 

(17) q+i+1 

where bk,i 1 -Znk-l-nk ( nk 

n k- 1/ 

then EXIT; 
(v) go to step (ii) with k := k + 1. 

A key observation is now in order. In principle, representation (15) can be used 
only for n > n* (cf. (14)), so that in step (i) one should choose no > n* and 
compute the initial sum Sno to start the iterative process, making an appropriate 
use of the a posteriori estimate (17). Such an estimate is strongly based on the 
asymptotic nature of (15): in fact by (15) we obtain En,i -v zn bi+1(z) n-(q+i+l) for 
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n > n* sufficiently large, and moreover, we have 

|Snk -Snk-k + Unk,i 
- 

Unkl,iI 
= 

knk,i 
- 

Enkl,iI 

(18) _ -Zl k(nk )q+i+l) 
(18) | (1 

z~~znk-1 - n (_E nk,iW 

for k sufficiently large. 
This implies that a (possibly sharp) overestimate of n should be produced (cf. 

(9)), for example by using for the denominator f3(z) one of the well-known a priori 
bounds of the complex zeros of a polynomial, or by applying a suitable localization 
algorithm for the zeros; cf. [7, Ch.6] for an extensive treatment of these topics. In 
fact, in excluding the zeros of f3(z) we exclude a fortiori the poles of r(z). 

In practice, however, the summation algorithm sketched above turns out to be 
"robust" in the sense that it gives a correct answer also starting from no = jo-1, 
Sno = 0: our numerical experiments confirmed that in every case the exit index 
nk is greater than n*. On the other hand, it should also be noticed that this 
dependence on the value of n* can represent a possible drawback of the method, 
when b < -1 or when r(z) exhibits poles with very large modulus. 

4. NUMERICAL EXAMPLES 

In this section we present the results of the application of the asymptotic sum- 
mation method to several series of the form (8). In all the examples we set a 
relative tolerance reltol = 10-14 in the termination test (17): in Tables I-X below 
(n, i) = (nk, i) is the first pair which satisfies (17). 

All computations have been carried out in double-precision arithmetic within 
the Turbo Pascal programming framework, on a Pentium-based personal computer. 
The accuracy and (empirical) stability of the method are witnessed by the fact that 
the actual errors are always below the prescribed tolerance; the errors have been 
computed by comparison with the values obtained by the numerical summation 
tool NSum of Mathematica [12, ?3.9.4]. 

Tables I-VIII refer to the summation of 
00 - I 

(19) zJ jv-l i + + 1 = ei/2 a E [0,2], 

for various admissible quadruples v, s, t, w corresponding to very slow convergence. 
Observe that the algorithm behavior gets worse in the neighborhood of z = 1 (i.e., 
for w "small"), while it works satisfactorily at z = 1 (w = 0); as already pointed 
out in [3], this could be ascribed to the discontinuity of the coefficients bk(z) at 
z = 1, since bk(z) const/(z - I)k+2 as z -* 1, cf. (4)-(6) and [3, Remark 1.4]. 

In Tables IX-X we report the results corresponding to the summation of 
0.0 

al 
. 

(20) j1 32j2 + )3 

for v = 1/2 and v = 9/10, varying the relative weights of the coefficients of the ra- 
tional function within a range of two orders of magnitude. Only the values of these 
coefficients which are not related by a scaling of the series have been considered. 
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TABLE I. Summation of (19) for v = 1, s = 1, t = 2 

w 11 2 1 1 ' 0.8 1 0.6 1 0.4 1 0.2 1 0.1 1 0.05 1 0.01 

n 67 90 90 117 149 230 336 547 2246 
m 9 9 10 10 10 11 14 17 21 

TABLE II. Summation of (19) for v = 1, s = 1, t = 3 

w 12 1 1 10.81 0.6 1 0.4 1 0.2 1 0.1 1 0.05 0.01 I 0 

n 60 81 81 105 134 167 300 490 2010 54 
m 8 9 9 9 10 13 13 16 17 8 

TABLE III. Summation of (19) for v = 1, s = 9, t = 10 

w 2 1 1 0.8 0.6 0.4 0.2 0.1 1 0.05 0.01 

nf 31 52 65 65 97 138 253 468 2027 
m 10 11 11 13 13 17 18 20 27 

TABLE IV. Summation of (19) for v = 1, s = 9, t = 11 

t 11 2 1 1 0.8 10.6 10.4 1 0.2 1 0.1 1 0.05 0.01i ] 

TABLE V. Summation of (19) for v = 1/2, s 1, t 2 

ft w ][2 [ 1 10.810.610.41 0.2 1 o.11o.o5o.o1 0 ?B 
n 40 521 65 65 97 138 T 253 T 468 2027 20 l 
m m 1110 111 11 13 12 16 17 18 20 11 | 

TABLE VI. Summation of (19) for v = 1/2, s = 1, t 3 

w 11 2 110.810.610.4 [0.2 0.1 1.o5 0.011 0 
n 30 49 49 62 76 133 211 401 11693 19 1 

m 10 10 12 12 14 14 20 18 19 11 1 

As a confirmation of the robustness of the summation algorithm, it is also interesting 
to quote the following result. For a, = 1, ao = 1, 32 1, and /0 = 104 we obtained 
(n, m) = (198, 37) with reltol = 10-14, and (n, m) (119, 23) with reltol = 10-4, 

both starting from no = 0, Sno = 0: observe that n > n* = i = 100 for two very 
different values of the relative tolerance. 
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TABLE VII. Summation of (19) for v = 1/2, s = 9, t 10 

w 1J 2 1 1 0.8Jo 0.6 1 0.41 -0.2- 0.1 0.05[ 001_? 
n 31 39 48 58 83 133 224 428 1909 13 
Tm 10 13 13 14 14 17 21 21 25 12 

TABLE VIII. Summation of (19) for v = 1/2, s = 9, t = 11 

w 1] 2 1 1 0.8 [0.6 10.41 0.2 1 0.1 J0.05 0.011 0 
n 30 38 47 57 68 112 119 379 1653 12 

m 10 12 12 12 15 19 17 21 19 9 

TABLE IX. Summation of (20) for v = 1/2 

11 1 1 1 1 1 1 1 1 1 1I 10 10 10 
O0 I1 1 1 1 1 10 10 10 10 10 1 1 1 
/32 1 1 1 10 102 1 1 1 10 102 1 1 1 

,ol 1 10 1021 1 1 10102 1 1 1 10 102 
nr 21 32 50 18 10 21 28 50 18 18 21 32 50 
m 11 13 18 10 10 11 13 18 10 10 11 12 18 

a1 10 10 I 1 1 1 102 102 102 1 2102 

Oa 11 1 102 102 102 102 102 1 1 1 1 1 
/32 10 102 1 1 1 10 102 1 1 1 10 102 
/3o1 1 1 10 102 1 1 1 10 102 1 1 
Inr 18 18 21 32 50 18 18 21 32 50 18 18 
m 9 9 11 13 18 10 10 11 12 18 9 9 

TABLE X. Summation of (20) for v = 9/10 

a1 1 1 1 1 1 1 1 1 1 1 10 10 10 
a0 11 1 1 1 1 10 10 10 10 10 1 1 1 
/32 1 1 1 10 102 1 1 1 10 102 1 1 1 

o1 10 1021 1 1 10102 1 1 1 10 102 
n 21 32 50 18 18 21 28 50 18 18 21 32 50 
m 10 13 18 10 10 11 13 18 10 10 11 12 18 

a1 10 10 I 1 1 1 0 1 1 2 l102 Ti2 i2 

Oa 11 1 102 102 102 102 102 1 1 1 1 1 
/32 10 102 1 1 1 10 102 1 1 1 10 102 

ol 1 1 1I 10 102 1 1 1 10 102 1 1 
n 18 18 24 32 55 18 18 21 28 50 18 15 
m 9 9 11 13 18 10 10 11 12 18 9 9 
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